Search results for "single-event effects"

showing 4 items of 4 documents

Enhanced Charge Collection in SiC Power MOSFETs Demonstrated by Pulse-Laser Two-Photon Absorption SEE Experiments

2019

A two-photon absorption technique is used to understand the mechanisms of single-event effects (SEEs) in silicon carbide power metal–oxide–field-effect transistors (MOSFETs) and power junction barrier Schottky diodes. The MOSFETs and diodes have similar structures enabling the identification of effects associated specifically with the parasitic bipolar structure that is present in the MOSFETs, but not the diodes. The collected charge in the diodes varies only with laser depth, whereas it varies with depth and lateral position in the MOSFETs. Optical simulations demonstrate that the variations in collected charge observed are from the semiconductor device structure and not from metal/passiva…

Nuclear and High Energy PhysicsMaterials sciencesingle-event effectsSchottky diodesSemiconductor laser theoryelektroniikkakomponentitchemistry.chemical_compoundsilicon carbideMOSFETSilicon carbidetwo-photon absorptionElectrical and Electronic EngineeringPower MOSFETvertical MOSFETDiodebusiness.industrySchottky diodeSemiconductor deviceNuclear Energy and EngineeringchemistrysäteilyfysiikkatransistoritOptoelectronicsCharge carrierdioditbusinesspulse height analysis
researchProduct

Single Event Transients and Pulse Quenching Effects in Bandgap Reference Topologies for Space Applications

2016

An architectural performance comparison of bandgap voltage reference variants, designed in a $0.18~\mu \text {m}$ CMOS process, is performed with respect to single event transients. These are commonly induced in microelectronics in the space radiation environment. Heavy ion tests (Silicon, Krypton, Xenon) are used to explore the analog single-event transients and have revealed pulse quenching mechanisms in analogue circuits. The different topologies are compared, in terms of cross-section, pulse duration and pulse amplitude. The measured results, and the explanations behind the findings, reveal important guidelines for designing analog integrated circuits, which are intended for space appli…

mikroelektroniikkaNuclear and High Energy PhysicsBandgap voltage referencecircuit topologysingle-event transient (SET)Integrated circuit01 natural scienceslaw.inventionsingle event transientsCurrent mirrorlawpulse quenchingsingle-event effects (SEE)ionizationradiation hardening by design (RHBD)0103 physical sciencesElectronic engineeringMicroelectronicsAnalog single-event transient (ASET); bandgap voltage reference (BGR); charge sharing; CMOS analog integrated circuits; heavy ion; ionization; parasitic bipolar effect; pulse quenching; radiation effects; radiation hardening by design (RHBD); reference circuits; single-event effects (SEE); single-event transient (SET); space electronics; Voltage reference; Nuclear and High Energy Physics; Nuclear Energy and Engineering; Electrical and Electronic EngineeringAnalog single-event transient (ASET)Electrical and Electronic Engineeringparasitic bipolar effectreference voltage010302 applied physicsPhysicsbandgap voltage reference (BGR)charge sharingta114ta213010308 nuclear & particles physicsbusiness.industryanalog integrated circuitsTransistorspace electronicsPulse durationheavy ionPulse (physics)Voltage referenceNuclear Energy and EngineeringPulse-amplitude modulationreference circuitsmicroelectronicsradiation effectsspace applicationsOptoelectronicsbusinessCMOS analog integrated circuitsIEEE Transactions on Nuclear Science
researchProduct

Low-Power, Subthreshold Reference Circuits for the Space Environment : Evaluated with -rays, X-rays, Protons and Heavy Ions

2019

The radiation tolerance of subthreshold reference circuits for space microelectronics is presented. The assessment is supported by measured results of total ionization dose and single event transient radiation-induced effects under &gamma

02 engineering and technologyHardware_PERFORMANCEANDRELIABILITYgammasäteily7. Clean energy01 natural sciencesanalog single-event transient (ASET)Ionizationsingle-event effects (SEE)0202 electrical engineering electronic engineering information engineeringAnnan elektroteknik och elektronikElectronic circuitPhysicsprotonsSubthreshold conductionionisoiva säteilyröntgensäteilyGamma raygamma-raysHardware and ArchitectureAtomic physicsVoltage referencemikroelektroniikkaprotonitComputer Networks and Communicationslcsh:TK7800-8360voltage referenceIonheavy-ions0103 physical sciencesionizationradiation hardening by design (RHBD)X-raysHardware_INTEGRATEDCIRCUITSMicroelectronicsElectrical and Electronic Engineeringhiukkassäteilybandgap voltage reference (BGR)Other Electrical Engineering Electronic Engineering Information Engineering010308 nuclear & particles physicsbusiness.industry020208 electrical & electronic engineeringlcsh:Electronicsspace electronicstotal ionization dose (TID)Analog single-event transient (ASET); Bandgap voltage reference (BGR); CMOS analog integrated circuits; Gamma-rays; Heavy-ions; Ionization; Protons; Radiation hardening by design (RHBD); Reference circuits; Single-event effects (SEE); Space electronics; Total ionization dose (TID); Voltage reference; X-raysmikropiiritsäteilyfysiikkaControl and Systems Engineeringreference circuitsSignal ProcessingbusinessSpace environmentHardware_LOGICDESIGNCMOS analog integrated circuits
researchProduct

Unifying Concepts for Ion-Induced Leakage Current Degradation in Silicon Carbide Schottky Power Diodes

2020

The onset of ion-induced reverse leakage current in SiC Schottky diodes is shown to depend on material properties, ion LET, and bias during irradiation, but not the voltage rating of the parts. This is demonstrated experimentally for devices from multiple manufacturers with voltage ratings from 600 V to 1700 V. Using a device with a higher breakdown voltage than required in the application does not provide increased robustness related to leakage current degradation, compared to using a device with a lower voltage rating. peerReviewed

säteilyfysiikkapuolijohteetsingle-event effectsSchottky diodesdioditSilicon carbidevertical MOSFETelektroniikkakomponentit
researchProduct